The Eigenvalues of Second - Order Spectral Differentiation Matrices *

نویسندگان

  • J. A. C. WEIDEMAN
  • L. N. TREFETHEN
چکیده

The eigenvalues of the pseudospectral second derivative matrix with homogeneous Dirichlet boundary conditions are important in many applications of spectral methods. This paper investigates some of their properties. Numerical results show that a certain fraction of the eigenvalues approximate the eigenvalues of the continuous operator very accurately, but the errors in the remaining ones are large. It is demonstrated that the inaccurate eigenvalues correspond to those eigenfunctions of the continuous operator that cannot be resolved by polynomial interpolation in the spectral grid. In particular, it is proved that 7r points on average per wavelength are sufficient for successful interpolation of the eigenfunctions of the continuous operator in a Chebyshev distribution of nodes, and six points per wavelength for a uniform distribution. These results are in agreement with the observed fractions of accurate eigenvalues. By using the characteristic polynomial, a bound on the spectral radius of the differentiation matrix is derived that is accurate to 2% or better. The effect of filtering on the eigenvalues is studied numerically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

On the eigenvalues of some matrices based on vertex degree

The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988